pyseobnr.eob.hamiltonian.Ham_align_a6_apm_AP15_DP23_gaugeL_Tay_C.Ham_align_a6_apm_AP15_DP23_gaugeL_Tay_C

class pyseobnr.eob.hamiltonian.Ham_align_a6_apm_AP15_DP23_gaugeL_Tay_C.Ham_align_a6_apm_AP15_DP23_gaugeL_Tay_C

Bases: Hamiltonian_C

__init__()

Methods

__init__()

auxderivs(q, p, chi_1, chi_2, m_1, m_2)

Compute derivatives of the potentials which are used in the post-adiabatic approximation.

csi(q, p, chi_1, chi_2, m_1, m_2)

dynamics(q, p, chi_1, chi_2, m_1, m_2)

Compute the dynamics from the Hamiltonian: dHdr, dHdphi, dHdpr, dHdpphi, H and xi.

grad(q, p, chi_1, chi_2, m_1, m_2)

Compute the gradient of the Hamiltonian in polar coordinates.

hessian(q, p, chi_1, chi_2, m_1, m_2)

Evaluate the Hessian of the Hamiltonian.

omega(q, p, chi_1, chi_2, m_1, m_2)

Compute the orbital frequency from the Hamiltonian.

Attributes

calibration_coeffs

eob_params

__call__(*args, **kwargs)

Call self as a function.

auxderivs(q, p, chi_1, chi_2, m_1, m_2)

Compute derivatives of the potentials which are used in the post-adiabatic approximation.

Parameters:
  • q (tuple[double, double]) – Canonical positions (r,phi).

  • p (tuple[double, double]) – Canonical momenta (prstar,pphi).

  • chi1 (double) – Dimensionless z-spin of the primary.

  • chi2 (double) – Dimensionless z-spin of the secondary.

  • m_1 (double) – Primary mass component.

  • m_2 (double) – Secondary mass component.

Returns:

(tuple) dAdr, dBnpdr, dBnpadr, dxidr, dQdr, dQdprst, dHodddr

dynamics(q, p, chi_1, chi_2, m_1, m_2)

Compute the dynamics from the Hamiltonian: dHdr, dHdphi, dHdpr, dHdpphi, H and xi.

Parameters:
  • q (tuple[double, double]) – Canonical positions (r,phi).

  • p (tuple[double, double]) – Canonical momenta (prstar,pphi).

  • chi1 (double) – Dimensionless z-spin of the primary.

  • chi2 (double) – Dimensionless z-spin of the secondary.

  • m_1 (double) – Primary mass component.

  • m_2 (double) – Secondary mass component.

Returns:

(tuple) dHdr, dHdphi, dHdpr, dHdpphi, H and xi

grad(q, p, chi_1, chi_2, m_1, m_2)

Compute the gradient of the Hamiltonian in polar coordinates.

Parameters:
  • q (tuple[double, double]) – Canonical positions (r,phi).

  • p (tuple[double, double]) – Canonical momenta (prstar,pphi).

  • chi1 (double) – Dimensionless z-spin of the primary.

  • chi2 (double) – Dimensionless z-spin of the secondary.

  • m_1 (double) – Primary mass component.

  • m_2 (double) – Secondary mass component.

Returns:

(tuple) dHdr, dHdphi, dHdpr, dHdpphi

hessian(q, p, chi_1, chi_2, m_1, m_2)

Evaluate the Hessian of the Hamiltonian.

Parameters:
  • q (tuple[double, double]) – Canonical positions (r,phi).

  • p (tuple[double, double]) – Canonical momenta (prstar,pphi).

  • chi1 (double) – Dimensionless z-spin of the primary.

  • chi2 (double) – Dimensionless z-spin of the secondary.

  • m_1 (double) – Primary mass component.

  • m_2 (double) – Secondary mass component.

Returns:

(np.array) d2Hdr2, d2Hdrdphi, d2Hdrdpr, d2Hdrdpphi, d2Hdrdphi, d2Hdphi2, d2Hdphidpr, d2Hdphidpphi, d2Hdrdpr, d2Hdphidpr, d2Hdpr2, d2Hdprdpphi, d2Hdrdpphi, d2Hdphidpphi, d2Hdprdpphi, d2Hdpphi2

omega(q, p, chi_1, chi_2, m_1, m_2)

Compute the orbital frequency from the Hamiltonian.

Parameters:
  • q (tuple[double, double]) – Canonical positions (r,phi).

  • p (tuple[double, double]) – Canonical momenta (prstar,pphi).

  • chi1 (double) – Dimensionless z-spin of the primary.

  • chi2 (double) – Dimensionless z-spin of the secondary.

  • m_1 (double) – Primary mass component.

  • m_2 (double) – Secondary mass component.

Returns:

(double) dHdpphi