pyseobnr.eob.hamiltonian.Ham_align_a6_apm_AP15_DP23_gaugeL_Tay_C.Ham_align_a6_apm_AP15_DP23_gaugeL_Tay_C
- class pyseobnr.eob.hamiltonian.Ham_align_a6_apm_AP15_DP23_gaugeL_Tay_C.Ham_align_a6_apm_AP15_DP23_gaugeL_Tay_C
Bases:
Hamiltonian_C
- __init__()
Methods
__init__
()auxderivs
(q, p, chi_1, chi_2, m_1, m_2)Compute derivatives of the potentials which are used in the post-adiabatic approximation.
csi
(q, p, chi_1, chi_2, m_1, m_2)dynamics
(q, p, chi_1, chi_2, m_1, m_2)Compute the dynamics from the Hamiltonian: dHdr, dHdphi, dHdpr, dHdpphi, H and xi.
grad
(q, p, chi_1, chi_2, m_1, m_2)Compute the gradient of the Hamiltonian in polar coordinates.
hessian
(q, p, chi_1, chi_2, m_1, m_2)Evaluate the Hessian of the Hamiltonian.
omega
(q, p, chi_1, chi_2, m_1, m_2)Compute the orbital frequency from the Hamiltonian.
Attributes
calibration_coeffs
eob_params
- __call__(*args, **kwargs)
Call self as a function.
- auxderivs(q, p, chi_1, chi_2, m_1, m_2)
Compute derivatives of the potentials which are used in the post-adiabatic approximation.
- Parameters:
q (tuple[double, double]) – Canonical positions (r,phi).
p (tuple[double, double]) – Canonical momenta (prstar,pphi).
chi1 (double) – Dimensionless z-spin of the primary.
chi2 (double) – Dimensionless z-spin of the secondary.
m_1 (double) – Primary mass component.
m_2 (double) – Secondary mass component.
- Returns:
(tuple) dAdr, dBnpdr, dBnpadr, dxidr, dQdr, dQdprst, dHodddr
- dynamics(q, p, chi_1, chi_2, m_1, m_2)
Compute the dynamics from the Hamiltonian: dHdr, dHdphi, dHdpr, dHdpphi, H and xi.
- Parameters:
q (tuple[double, double]) – Canonical positions (r,phi).
p (tuple[double, double]) – Canonical momenta (prstar,pphi).
chi1 (double) – Dimensionless z-spin of the primary.
chi2 (double) – Dimensionless z-spin of the secondary.
m_1 (double) – Primary mass component.
m_2 (double) – Secondary mass component.
- Returns:
(tuple) dHdr, dHdphi, dHdpr, dHdpphi, H and xi
- grad(q, p, chi_1, chi_2, m_1, m_2)
Compute the gradient of the Hamiltonian in polar coordinates.
- Parameters:
q (tuple[double, double]) – Canonical positions (r,phi).
p (tuple[double, double]) – Canonical momenta (prstar,pphi).
chi1 (double) – Dimensionless z-spin of the primary.
chi2 (double) – Dimensionless z-spin of the secondary.
m_1 (double) – Primary mass component.
m_2 (double) – Secondary mass component.
- Returns:
(tuple) dHdr, dHdphi, dHdpr, dHdpphi
- hessian(q, p, chi_1, chi_2, m_1, m_2)
Evaluate the Hessian of the Hamiltonian.
- Parameters:
q (tuple[double, double]) – Canonical positions (r,phi).
p (tuple[double, double]) – Canonical momenta (prstar,pphi).
chi1 (double) – Dimensionless z-spin of the primary.
chi2 (double) – Dimensionless z-spin of the secondary.
m_1 (double) – Primary mass component.
m_2 (double) – Secondary mass component.
- Returns:
(np.array) d2Hdr2, d2Hdrdphi, d2Hdrdpr, d2Hdrdpphi, d2Hdrdphi, d2Hdphi2, d2Hdphidpr, d2Hdphidpphi, d2Hdrdpr, d2Hdphidpr, d2Hdpr2, d2Hdprdpphi, d2Hdrdpphi, d2Hdphidpphi, d2Hdprdpphi, d2Hdpphi2
- omega(q, p, chi_1, chi_2, m_1, m_2)
Compute the orbital frequency from the Hamiltonian.
- Parameters:
q (tuple[double, double]) – Canonical positions (r,phi).
p (tuple[double, double]) – Canonical momenta (prstar,pphi).
chi1 (double) – Dimensionless z-spin of the primary.
chi2 (double) – Dimensionless z-spin of the secondary.
m_1 (double) – Primary mass component.
m_2 (double) – Secondary mass component.
- Returns:
(double) dHdpphi