pyseobnr.eob.hamiltonian.Ham_AvgS2precess_simple_cython_PA_AD.Ham_AvgS2precess_simple_cython_PA_AD

class pyseobnr.eob.hamiltonian.Ham_AvgS2precess_simple_cython_PA_AD.Ham_AvgS2precess_simple_cython_PA_AD

Bases: Hamiltonian_v5PHM_C

__init__()

Methods

__init__()

auxderivs(q, p, chi1_v, chi2_v, m_1, m_2, ...)

Compute derivatives of the potentials which are used in the post-adiabatic approximation.

csi(q, p, chi1_v, chi2_v, m_1, m_2, chi_1, ...)

Compute the tortoise coordinate conversion factor.

dynamics(q, p, chi1_v, chi2_v, m_1, m_2, ...)

Compute the dynamics from the Hamiltonian: dHdr, dHdphi, dHdpr, dHdpphi, H and xi.

grad(q, p, chi1_v, chi2_v, m_1, m_2, chi_1, ...)

Compute the gradient of the Hamiltonian in polar coordinates.

hessian(q, p, chi1_v, chi2_v, m_1, m_2, ...)

Evaluate the Hessian of the Hamiltonian.

omega(q, p, chi1_v, chi2_v, m_1, m_2, chi_1, ...)

Compute the orbital frequency from the Hamiltonian.

Attributes

calibration_coeffs

eob_params

__call__(*args, **kwargs)

Call self as a function.

auxderivs(q, p, chi1_v, chi2_v, m_1, m_2, chi_1, chi_2, chi_L1, chi_L2)

Compute derivatives of the potentials which are used in the post-adiabatic approximation.

Parameters:
  • q (tuple[double, double]) – Canonical positions (r,phi).

  • p (tuple[double, double]) – Canonical momenta (prstar,pphi).

  • chi1_v (tuple[double, double, double]) – Dimensionless spin vector of the primary.

  • chi2_v (tuple[double, double, double]) – Dimensionless spin vector of the secondary.

  • m_1 (double) – Primary mass component.

  • m_2 (double) – Secondary mass component.

  • chi_1 (double) – Projection of chi1_v onto the Newtonian orbital angular momentum unit vector (lN).

  • chi_2 (double) – Projection of chi2_v onto the Newtonian orbital angular momentum unit vector (lN).

  • chi_L1 (double) – Projection of chi1_v onto the orbital angular momentum unit vector (l).

  • chi_L2 (double) – Projection of chi2_v onto the orbital angular momentum unit vector (l).

Returns:

(tuple) dAdr, dBnpdr, dBnpadr, dxidr, dQdr, dQdprst, dHodddr, dBpdr, dHevendr

csi(q, p, chi1_v, chi2_v, m_1, m_2, chi_1, chi_2, chi_L1, chi_L2)

Compute the tortoise coordinate conversion factor.

Parameters:
  • q (tuple[double, double]) – Canonical positions (r,phi).

  • p (tuple[double, double]) – Canonical momenta (prstar,pphi).

  • chi1_v (tuple[double, double, double]) – Dimensionless spin vector of the primary.

  • chi2_v (tuple[double, double, double]) – Dimensionless spin vector of the secondary.

  • m_1 (double) – Primary mass component.

  • m_2 (double) – Secondary mass component.

  • chi_1 (double) – Projection of chi1_v onto the Newtonian orbital angular momentum unit vector (lN).

  • chi_2 (double) – Projection of chi2_v onto the Newtonian orbital angular momentum unit vector (lN).

  • chi_L1 (double) – Projection of chi1_v onto the orbital angular momentum unit vector (l).

  • chi_L2 (double) – Projection of chi2_v onto the orbital angular momentum unit vector (l).

Returns:

(double) xi

dynamics(q, p, chi1_v, chi2_v, m_1, m_2, chi_1, chi_2, chi_L1, chi_L2)

Compute the dynamics from the Hamiltonian: dHdr, dHdphi, dHdpr, dHdpphi, H and xi.

Parameters:
  • q (tuple[double, double]) – Canonical positions (r,phi).

  • p (tuple[double, double]) – Canonical momenta (prstar,pphi).

  • chi1_v (tuple[double, double, double]) – Dimensionless spin vector of the primary.

  • chi2_v (tuple[double, double, double]) – Dimensionless spin vector of the secondary.

  • m_1 (double) – Primary mass component.

  • m_2 (double) – Secondary mass component.

  • chi_1 (double) – Projection of chi1_v onto the Newtonian orbital angular momentum unit vector (lN).

  • chi_2 (double) – Projection of chi2_v onto the Newtonian orbital angular momentum unit vector (lN).

  • chi_L1 (double) – Projection of chi1_v onto the orbital angular momentum unit vector (l).

  • chi_L2 (double) – Projection of chi2_v onto the orbital angular momentum unit vector (l).

Returns:

(tuple) dHdr, dHdphi, dHdpr, dHdpphi, H and xi

grad(q, p, chi1_v, chi2_v, m_1, m_2, chi_1, chi_2, chi_L1, chi_L2)

Compute the gradient of the Hamiltonian in polar coordinates.

Parameters:
  • q (tuple[double, double]) – Canonical positions (r,phi).

  • p (tuple[double, double]) – Canonical momenta (prstar,pphi).

  • chi1_v (tuple[double, double, double]) – Dimensionless spin vector of the primary.

  • chi2_v (tuple[double, double, double]) – Dimensionless spin vector of the secondary.

  • m_1 (double) – Primary mass component.

  • m_2 (double) – Secondary mass component.

  • chi_1 (double) – Projection of chi1_v onto the Newtonian orbital angular momentum unit vector (lN).

  • chi_2 (double) – Projection of chi2_v onto the Newtonian orbital angular momentum unit vector (lN).

  • chi_L1 (double) – Projection of chi1_v onto the orbital angular momentum unit vector (l).

  • chi_L2 (double) – Projection of chi2_v onto the orbital angular momentum unit vector (l).

Returns:

(tuple) dHdr, dHdphi, dHdpr, dHdpphi

hessian(q, p, chi1_v, chi2_v, m_1, m_2, chi_1, chi_2, chi_L1, chi_L2)

Evaluate the Hessian of the Hamiltonian.

Parameters:
  • q (qp_param_t) – Canonical positions (r,phi).

  • p (qp_param_t) – Canonical momenta (prstar,pphi).

  • chi1_v (tuple[double, double, double]) – Dimensionless spin vector of the primary.

  • chi2_v (tuple[double, double, double]) – Dimensionless spin vector of the secondary.

  • m_1 (double) – Primary mass component.

  • m_2 (double) – Secondary mass component.

  • chi_1 (double) – Projection of chi1_v onto the Newtonian orbital angular momentum unit vector (lN).

  • chi_2 (double) – Projection of chi2_v onto the Newtonian orbital angular momentum unit vector (lN).

  • chi_L1 (double) – Projection of chi1_v onto the orbital angular momentum unit vector (l).

  • chi_L2 (double) – Projection of chi2_v onto the orbital angular momentum unit vector (l).

Returns:

(np.array) d2Hdr2, d2Hdrdphi, d2Hdrdpr, d2Hdrdpphi, d2Hdrdphi, d2Hdphi2, d2Hdphidpr, d2Hdphidpphi, d2Hdrdpr, d2Hdphidpr, d2Hdpr2, d2Hdprdpphi, d2Hdrdpphi, d2Hdphidpphi, d2Hdprdpphi, d2Hdpphi2

omega(q, p, chi1_v, chi2_v, m_1, m_2, chi_1, chi_2, chi_L1, chi_L2)

Compute the orbital frequency from the Hamiltonian.

Parameters:
  • q (tuple[double, double]) – Canonical positions (r,phi).

  • p (tuple[double, double]) – Canonical momenta (prstar,pphi).

  • chi1_v (tuple[double, double, double]) – Dimensionless spin vector of the primary.

  • chi2_v (tuple[double, double, double]) – Dimensionless spin vector of the secondary.

  • m_1 (double) – Primary mass component.

  • m_2 (double) – Secondary mass component.

  • chi_1 (double) – Projection of chi1_v onto the Newtonian orbital angular momentum unit vector (lN).

  • chi_2 (double) – Projection of chi2_v onto the Newtonian orbital angular momentum unit vector (lN).

  • chi_L1 (double) – Projection of chi1_v onto the orbital angular momentum unit vector (l).

  • chi_L2 (double) – Projection of chi2_v onto the orbital angular momentum unit vector (l).

Returns:

(double) dHdpphi